首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8747篇
  免费   727篇
  国内免费   710篇
电工技术   152篇
综合类   529篇
化学工业   4697篇
金属工艺   725篇
机械仪表   352篇
建筑科学   66篇
矿业工程   90篇
能源动力   56篇
轻工业   35篇
水利工程   1篇
石油天然气   10篇
武器工业   87篇
无线电   1092篇
一般工业技术   1917篇
冶金工业   276篇
原子能技术   23篇
自动化技术   76篇
  2024年   11篇
  2023年   426篇
  2022年   486篇
  2021年   397篇
  2020年   417篇
  2019年   373篇
  2018年   365篇
  2017年   382篇
  2016年   229篇
  2015年   175篇
  2014年   287篇
  2013年   302篇
  2012年   373篇
  2011年   541篇
  2010年   338篇
  2009年   437篇
  2008年   371篇
  2007年   547篇
  2006年   483篇
  2005年   411篇
  2004年   379篇
  2003年   332篇
  2002年   284篇
  2001年   259篇
  2000年   246篇
  1999年   213篇
  1998年   197篇
  1997年   190篇
  1996年   143篇
  1995年   137篇
  1994年   86篇
  1993年   82篇
  1992年   71篇
  1991年   63篇
  1990年   48篇
  1989年   45篇
  1988年   27篇
  1987年   11篇
  1986年   8篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
21.
《Ceramics International》2022,48(12):17086-17094
The composition of polymer derived ceramics could be readily tuned through controlling the structure and element content of the polymer precursors, and investigation on the effect of the element on microstructure evolution is important to the design of advanced ceramics. In this article, the effect of carbon content in SiBCO polymer precursors was systematically investigated. The polymer network and thermal stability of polymer precursors and the carbon content of pyrolyzed SiBCO ceramic could be readily tuned by controlling the DVB amount used. Carbon contributed to the formation of graphitic carbon in SiBCxO ceramics and inhibited the growth of β–SiC and SiO2 crystals at 1600 °C, but lead to an increase in the graphitic carbon phase at 1800 °C.  相似文献   
22.
《Ceramics International》2022,48(2):1451-1483
Metal/ceramic composites are in high demand in several industries because of their superior thermo-mechanical properties. Among various composite types, the interpenetrating phase composites (IPCs) with percolating metallic and ceramic phases offer manifold benefits, such as a good combination of strength, toughness, and stiffness, very good thermal properties, excellent wear resistance, as well as the flexibility of microstructure and processing route selection, etc. The fabrication of metal/ceramic IPCs typically involves two steps - i) processing of an open porous ceramic body, and ii) infiltration of metallic melt in the pores to fabricate the IPC. Although significant progress has been made in recent years for developing both porous ceramics and melt infiltration methods, to the best of the knowledge of the authors, no review article summarizing all the aspects of processing and properties of IPCs has been published till date. This review article is aimed at filling this gap. Starting with a brief introduction about the current status and applications of IPCs, the various processing routes for fabricating open porous ceramic preforms and melt infiltration techniques have been discussed. Subsequently, the data available for various important physical, mechanical, and thermal properties for IPCs have been critically analyzed to thoroughly understand their dependence on various structural and processing parameters. To compare the properties of IPCs with other relevant materials, seven different Ashby material property maps have been used, and the domains for IPCs have been created in them. For each map, the concept of material indices has been employed to critically discuss how IPCs perform in relation to other material classes for various optimum design conditions. Finally, a detailed future outlook for further research on IPCs has been provided.  相似文献   
23.
《Ceramics International》2022,48(6):7344-7361
Zirconium diboride (ZrB2) and silicon carbide (SiC) composites have long been of interest since it was observed that ZrB2 improved the thermal shock resistance of SiC. However, processing of these materials can be difficult due to high and different sintering temperatures and differences in the thermodynamic stability of each material. ZrB2–SiC composites have been processed in a variety of ways including hot-pressing, spark-plasma sintering, reactive melt infiltration, pack cementation, chemical vapor deposition, chemical vapor infiltration, stereolithography, direct ink writing, selective laser sintering, electron beam melting, and binder jet additive manufacturing. Each manufacturing method has its own pros and cons. This review serves to summarize more than 60 years of research and provide a coherent resource for the variety of methods and advancements in development of ZrB2–SiC composites.  相似文献   
24.
《Ceramics International》2022,48(11):15364-15370
This study reports on the preparation and mechanical properties of a novel SiCnf/SiC composite. The single crystal SiC nanofiber(SiCnf) reinforced SiC ceramic matrix composites (CMC) were successfully fabricated by hot pressing the mixture of β-SiC powders, SiCnf and Al–B–C powder. The effects of SiCnf mass fraction as well as the hot-pressing temperature on the microstructure and mechanical properties of SiCnf/SiC CMC were systematically investigated. The results demonstrated that the 15 wt% SiCnf/SiC CMC obtained by hot pressing (HP) at 1850 °C with 30 MPa for 60 min possessed the maximum flexural strength and fracture toughness of 678.2 MPa and 8.33 MPa m1/2, respectively. The nanofibers pull out, nanofibers bridging and cracks deflection were found by scanning electron microscopy, which are believed can strengthen and toughen the SiCnf/SiC CMC via consuming plenty of the fracture energy. Besides, although the relative density of the prepared SiCnf/SiC CMC further increased with the sintering temperature rose to 1900 °C, the further coarsend composites grains results in the deterioration of the mechanical properties for the obtained composites compared to 1850 °C.  相似文献   
25.
《Ceramics International》2022,48(11):15293-15302
The in situ temperature monitoring of hot components in harsh environments remains a challenging task. In this study, SiBCN thin-film resistance grids with thicknesses of 1.8 μm were fabricated on alumina substrates via direct writing. Owing to their dense microscopic morphology and extremely high graphitisation level, the produced SiBCN films exhibited large high-temperature oxidation resistance and electrical conductivity. The resistance–temperature, stability, and repeatability characteristics of these films were examined in an aerobic environment at temperatures up to 800 °C. The obtained results revealed that the thermistor resistance decreased monotonously with increasing temperature from room temperature to 800 °C. The SiBCN film resistance variations observed during repeated temperature cycling in the regions of 505–620 °C and 610–720 °C were 0.09% and 1.7%, respectively. The high cyclability and stability of the SiBCN thin film thermistor suggested its potential applicability for the in situ temperature monitoring of hot components in harsh environments.  相似文献   
26.
《Ceramics International》2022,48(17):24716-24724
Dielectric capacitors show great potential in superior energy storage devices. However, the energy density of these capacitors is still inadequate to meet the requirement of energy storage applications. In this study, the Bi0.5Na0.47Li0.03TiO3-xNaNbO3 (BNLT-xNN) ceramics were prepared via conventional solid-phase reaction. Results showed that NN can efficaciously enhance the breakdown strength (Eb) and the relaxation behavior of the BNLT ceramic because of the broken ferroelectric long-range order. When x = 0.3, the maximum Eb reached 350 kV/cm, at which the 0.7BNLT-0.3NN ceramic exhibited the high recoverable energy storage density (Wrec) of 4.83 J/cm3 and great efficiency (η) of 78.9%. The ceramic demonstrated good temperature stability at 20 °C-160 °C and excellent fatigue resistance. Additionally, the 0.7BNLT-0.3NN ceramic presented high power density (PD; ~77.58 MW/cm3), large current density (CD; ~861.99 A/cm2), and quite short discharge time (t0.9; ~0.090 μs). These results indicated that the 0.7BNLT-0.3NN material has excellent energy storage properties and various application prospects.  相似文献   
27.
《Ceramics International》2022,48(5):6294-6301
Materials with high thermo mechanical properties are required as laser media for high-powered lasers. One of such materials is lutetium-aluminum garnet (LuAG) doped with ytterbium. In the present work, we discuss for the first time a full comparative study of 5% Yb-doped LuYAG ceramics with variation Lu/Y ratio. Samples were prepared with addition of B2O3, MgO and SiO2 which were used as sintering aids. Grain sizes, shrinkage curves, lattice constants and transmission spectra were measured for all samples. Thermal conductivity was measured in a wide temperature range for all studied samples. Output power of 12 W and 60% slope efficiency were obtained on the 5% Yb:LuAG disk laser.  相似文献   
28.
The structure and properties of Mn-doped 0.67BiFeO3-0.33BaTiO3 ceramics are systematically investigated with respect to the effects of annealing prior to rapid cooling by quenching in air. Air-quenching induces a change in crystal structure from pseudo-cubic to rhombohedral, with higher quenching temperatures leading to an increased rhombohedral distortion. These structural changes are correlated with the appearance of more well-defined ferroelectric domain configurations. It is shown that the surface preparation procedures for XRD measurements can induce significant changes in the peak profiles, indicating differences in crystal structure between the surface and bulk regions. Frequency dispersion in the temperature-dependent relative permittivity for the as-sintered sample is significantly reduced after quenching, accompanied by enhancement of the Curie point and improved temperature-stability of piezoelectric properties. It is proposed that the formation of defect clusters by A-site cation diffusion during cooling is circumvented by quenching, leading to the observed modification of structural distortion and ferroelectric properties.  相似文献   
29.
Although KNN-based ceramics with high electrical properties are obtained through a variety of strategies, the temperature sensitivity is still one of the key technical bottlenecks hindering practical applications. Here, we use a new strategy, meticulously tailoring phase boundary, to refine the ferroelectric boundary of KNN-based ceramics, leading to high piezoelectricity companied with improving temperature stability. The highest d33 value in this system reaches 501 pC/N with a TC ∼ 240°C, whereas a large strain of ∼0.134% can be kept with 10% lower deterioration until 100°C. The origin of high piezoelectricity is mainly attributed to the well-preserved multiphase coexistence and the appearance of nanodomains, which greatly facilitate the polarization rotation. Instead of the changed intrinsic thermal insensitivity, the precision phase boundary engineering plays an important role in strengthening the temperature stability of electric-induced strain. This work provides a simple and effective method to obtain both high electrical properties and excellent thermal stability in KNN-based ceramics, which is expected to promote the practical applications in the future.  相似文献   
30.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号